SecondOrderPerturbationTheory
Table of Contents
1. Example Cc4s
input
A typical input file snippet to call the SecondOrderPerturbationTheory
algorithm is given below.
- name: SecondOrderPerturbationTheory in: coulombIntegrals: CoulombIntegrals slicedEigenEnergies: EigenEnergies out: energy:
2. Input Description
Input Keyword | Description | Default |
---|---|---|
coulombIntegrals |
Coulomb Integrals | |
slicedEigenEnergies |
Sliced one-electron energies |
3. Output
Below an example standard output stream is shown for a successful SecondOrderPerturbationTheory
algorithm run
step: 9, SecondOrderPerturbationTheory Contracting second order energy... correlation energy: -24.3605 singles: 0 direct: -35.3032 exchange: 10.9427 realtime 0.170357500 s --
4. Computational Complexity and memory footprint
Two objects of size \(\mathcal{O}{(N_\mathrm{o}^2 N_\mathrm{v}^2)}\) are stored in main memory. The computational complexity should be negligible as is of order \(\mathcal{O}{(N_o^2 N_v^2)}\).
5. Theory
The implemented expression assumes Hartree–Fock one-electron energies and can be found in Ref.(Moller and Plesset 1934).