SliceOperator
Table of Contents
1. Brief description
This algorithm splits all edges of an input tensor of type orbital and size \(N_p\)
in sizes of \(N_o\) and \(N_v\). It uses slicedEigenEnergies
to identify
the number of holes \(N_o\) and particles \(N_v\). The output tensor will be a set of
\(2^n\) tensors, where n is the number of edges with type orbital. For instance
the Coulomb Vertex will be processed like
\(\Gamma_p^p(G) \rightarrow \{ \Gamma_o^o(G), \Gamma_o^v(G), \Gamma_v^o(G), \Gamma_v^v(G)\}\).
2. Algorithm call
A typical input file snippet to call the SliceOperator algorithm is given below.
- name: SliceOperator in: slicedEigenEnergies: EigenEnergies operator: CoulombVertex out: slicedOperator: CoulombVertex
3. Algorithm input
Keyword | Value |
---|---|
operator |
Operator |
slicedEigenEnergies |
SlicedEigenEnergies |
3.1. operator
This is a single tensor.
4. Algorithm output
Keyword | Value |
---|---|
slicedOperator |
SlicedOperator |
4.1. slicedOperator
This is a set of tensors.
4.2. Sample stdout
The output of this algorithm reads
step: 4, SliceOperator Slicing CoulombVertex.elements into holes and particles. realtime 0.000798066 s
4.3. Sample yaml
output
floatingPointOperations: 0 flops: 0 in: operator: 0x24878e8 slicedEigenEnergies: 0x2487f38 name: SliceOperator out: slicedOperator: 0x24aee28 realtime: 0.002082513